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Abstract: In this article, a neo-iterated scheme is constructed to settle split generalized variational 
inequality and mixed equilibrium problem in two different Hilbert spaces. Under several mild 
conditions, the sequence produced of the proposed iterated algorithm converges strongly to solution 
of split generalized variational inequality and mixed equilibrium problem is proved. As application, 
we shall apply our result to reserach the split variational inequality problem and convex 
minimization problem. The results received in this paper enhance and generalize a number of recent 
relevant results. 

1. Introduction 

Suppose is a real Hilbert space, is a closed convex non-empty subset of  the problem of W Y W .

generalized variational inequality  is to seek    satisfies ( )GVI c Y

                                                         (1) , ( ) ( ) 0, ( ) ,   Kc t d t c t d Y

Where be a non-linear opreator,  be a continuous operator. :K W W :t W W

 represents the solution set of (1).  ( , , )GVI K t Y

If , problem (1) simplified the variational inequality problem, which is considred to seek t I
 satisfies c Y

                                                                (2) 
, 0, ,   Kc d c d Y

 represents the solution set of (2). ( , )VI K Y
Stampacchia [1] and Fichera [2] introduced Variational inequality theory, which furnishes the 

unified, natural, descent and valid structure for a ordinary treatment of a broad category of 
extraneous linear and non-linear problem proceed from transportations, elasticity, economics, 
engineering sciences, optimization and  control theory, see for instance [3-8].  

The mixed equilibrium problem  is to seek  satisfies ( )MEP c Y

                                   (3) ( , ) ( ) ( ) 0, ,     G c d d c d Y

Where is a nonlinear bifunction,  is a function with :  G Y Y R  :   Y R

. represents the solution of  (3). C dom   ( , )MEP G

If , the mixed equilibrium problem of (3) down to the equilibrium problem, which is to seek 0 

satisfies c Y

                                                        (4) ( , ) 0, ,  G c d d Y

represents the solution set of (4). ( )EP G
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The mixed equilibrium problem covers serval significant problems arising in science 
optimization, economics, physics, engineering, structural analysis, transportation and network, It 
has been demonstrated that mathematical programming problems can be thinked of as a prticular 
accomplishment of  the abstract equilibrium problems (e.g. [9,10]).  

Recently, split feasibility problem , which was first presented by Censor and Elfving [11], ( )SFP
has been widely concerned due to its utilizations in diverse fields, for instance, computer 
tomograph,   image restoration and radiation therapy treatment planning [12-14]. is considered SFP
the problem of seeking a point  satisfies c

 and , c Y Ac D

Where  and  be  closed convex nonempty subset of real Hilbert spaces  and  Y D 1W 2W

,respectively. is a linear operator with bounded .  :A 1 2W W

After split feasibility problem appeared, many authors used its idea to study more generalized 
split feasibility problem, such as split equilibrium problem, split common fixed point problem, split 
variational inequality problem and so on, for details see [15-18]. 

 In this article, we research following split generalized variational inequality and mixed 
equilibrium problem in two distrint Hilbert spaces: seek a point   satisfies c Y

        and                                       (5) ( , , )c GVI K t Y ( , )Ac MEP G

We construct an iterated algorithm and obtain strong convergence theorem. The main results 
recived in this paper enhance and generalize a number of  relevant result. 

2. Preliminaries 

The inner product denoted by ,  the norm denoted by . ,  

We call a mapping  : T Y W
(a) monotone, if  

 , 0, , ;    Te Td e d e d Y
(b) strongly monotone, if   satisfies 0 

 
2, , , ;     Te Td e d e d e d Y

(c) -inverse strongly nonotone, if there is  such that   0 

 
2, , , ;     Te Td e d Te Td e d Y

(d) -inverse strongly -monotone, if thereis  and a nonlinear operator  from  into  t 0  t Y
itself such that  

 
2( ) ( , , , ;     t e t d Te Td Te Td e d Y

(e) L-Lipschitz continuous, if there exists a constant L > 0 such that 

 
, , ;    Te Td L e d e d Y

(f) firmly nonexpansive, if 

 
2, , , ;Te Td e d Te Td e d C     

A multi-valued mapping  is  monotone, if  and  satisfy :U 1
1 2WW  , e d 1W ,  Ue v Ud

 A monotone mapping   is said to be maximal if the Graph(U) cannot , 0.  e d v :U 1
1 2WW 

be properly included in the graph of any other monotone mapping. 

A monotone mapping U is called maximal iff   for each  , e 1 1,W W , 0,  e d v

Graph(U) implies that  and a mapping U is maximal - monotone when and only  ,d v   Ue g
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when for  for each Graph(U) implies that .  , e u 1 1,W W ( ) ( ), 0,g e g d u v    ,d v  u Ue

We suppose bifunction ,  and the set satisfy the following conditions to  solve :  G Y Y R  Y
mixed equilibrium problem (3): 

(B1)  ( , ) 0, ;  G e e e Y

(B2)  is monontone, i.e.  G ( , ) ( , ) 0, , ;   G e q G q e e q Y

(B3) For all   , , , e q Y 0lim ( (1 ) , ) ( , );   t G t t e q G e q

(B4) For every , the function is convex and lower semi-continuous. e Y ( , )q G e q

(C1) For every , , there is a  subset with bounded  and  satisfies  e Y 0  eY Y  eq Y dom

 
 1( , ) ( ) , , \ 


      e e eG e q q q b b e b b Y Y

(C2)  is a bounded set. Y
Lemma 2.1. ([19]) Suppose  is a bifunction and satisfies the conditions (B1)-(B4) , :  G Y Y R

is a  convex and lower semicontinuous proper  function satisfying  :   Y R   Y dom

.  For , , define a operator   as below: 0  e Y : S Y W

                          (6) 
  1: ( , ) ( ) , ( ),     


 

         
 

S e Y G e q q q e q Y

For every  Suppose both (C1) and (C2) are true. Then the listed below conclusions hold: e W .

(a) For every   e W ,   ; S e

(b)  is firmly nonexpansive; S
(c)  is single-valued; S

(d)  ( ) ( , );F S MEP G

(e)  is  convex and closed. ( , )MEP G

Lemma 2.2. ([20]) Suppose   is a nonexpansive mapping, then  has the listed :T W W T
below  properties: 

(1) we have  , e d ,W W

                                 (7) 

21( ) ( ), ( ) ( ) ,
2

e Te d Td Td Te Te e Td d       

                                  (8) 

21( ) ( ), ( ) ( ) ,
2

Te e Td d d e Te e Td d        

(2)  we have  , e d W ( ),Fix T

                                                   (9) 

21( ), .
2

e Te d Te Te e   

Lemma 2.3. ([21]) There are bounded sequences  in a Banach space ,  let  sequence   ,ne  nd E

 satisfies . Assume  for   [0,1] n 0 liminf limsup 1    n n n n  1 1     n n n n ne d e

every  and   Then  0n   1 1limsup 0.n n n n nd d e e      lim 0.n n nd e  

Lemma 2.4. ([22]) Suppose sequence is nonnegative real numbers and satisfies  n
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, here sequence and  is a sequence with  1 1       n n n n n   (0,1) n 1
,


  nn   n

 (or  ). Then  limsup 0 n n 1
 


  n nn lim 0. n n

Lemma 2.5. ([23]) Let  be a closed ball with center 0 and radius in  (0) : :rB e E e r  0r 

uniformly convex Banach space . For  given arbitrarily sequence and  E    1 2, , , , 0n re e e B 

given arbitrarily number sequence such that  then there is a   1 2, , , ,  n  1
0, 1, 


 i ii

convex and  continuous strictly increasing function  with  such that for :[0, 2 ) [0, ) h r (0) 0h

any  the below inequalty is true: , ,i j N i j 

                                      (10) 
 

2
2

1 1
.   

 

 

   n n n n i j i j
n n

e e h e e

Lemma 2.6.([24]) Suppose be a nonexpansive mapping, then  is demi-closed at : S Y Y I S

zero, that is to say, for every sequence  in . if  converges weakly to  and  ne Y  ne p Y

 converges strongly to 0, then .    nI S e   0 I S p

3. Main Results 

In this part, we suppose the listed below conditions are met: 
(1) Assume that  and  be two closed convex and non-empty subsets of  real Hilbert spaces Y D

 and , severally; 1W 2W

(2)  is an -inverse strongly -monotone mapping; is a -strongly : K Y Y  t : t Y Y 

monotone and L-Lipschitz continuous mapping with  (the range of );  is a  Y R t t :  G D D R

bifunction;  is a linear and bounded  operator,   the adjoint operator of  is  :A 1 2W W A *.A

(3) where  is the spectral radius of  
  10, 2 , , (0, ),     L

M M *.AA
Now, we present the main result as below:  

Theorem 3.1. Let  and  be the same as above. Assume that  1 2, ,W W , , , , , , , , ,  Y D L M G A t K S

is defined as in (6),  is a metric projection of  onto . Let , and  be the YP 1W Y  ne  nb  nd

sequences defined by 

                                               (11) 

   
1

*

1

, ,
( ),

( ( )( )),
.







 
  


  
   

n Y n n

n Y n n

n n n n n n

e Y u Y
t d P t e Ke

b P d A S I Ad
e g u l e y b

where , ,  satisfy the listed below conditions:  ng  nl  ny

(i)  1;  n n ng l y

(ii)  lim 0; n ng

(iii) ; 0




  nn

g
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(iv) . 0 liminf limsup 1   n n n nl l

If , where then converges strongly to     : ( , , ), ( , ) ,   p p GVI K t Y Ap MEP G  ne

 
 .k P u

Proof. Let us break the proof down into several steps. 

Step 1. We will first prove that  is a solution of  e 1H ( , , ) GVI K t Y

                                            (12) ( ) ( ( ) ), 0,    Yt e P t e Ke  

By using the characteristic inequality of the projection, for any  we have ,d Y

 

( , , ) , ( ) ( ) 0

, ( ) ( ) 0

( ) ( ), ( ) ( ) 0

( ) ( ( ) ).







   

  

    

  Y

e GVI K t Y Ke t d t e

Ke t d t e

t e Ke t e t d t e

t e P t e Ke

  

 

   

  

Step 2. Showing  
2 2 2( ) ( ( ) ) ( ) ( ) ( 2 ) .           t e Ke t d Kd t e t d Ke Kd

In fact 

           (13) 

2 2 22

2 2 22

2 2

( ) ( ( ) ) ( ) ( ) 2 , ( ) ( )

( ) ( ) 2

( ) ( ) ( 2 ) .

   

 

  

         

     

    

t e Ke t d Kd t e t d Ke Kd t e t d Ke Kd

t e t d Ke Kd Ke Kd

t e t d Ke Kd

Next, we prove  converges strongly to   ne .b P u

Step 3. We prove that  .  n nb c e c

Let hence by (12), further, it follows from Lemma2.1,  ,c ( ) ( ( ) ) Yt c P t c Kc .SAc Ac
By (13) and condition (3) we have 

                   (14) 

( ) ( ) ( ( ) ( )) ( ( ) )

( ) ( ) ( ( ) )

( ) ( )

,

 

 

    

   

 

 

n Y n n Y

n n

n

n

t d t c P t e K e P t c Kc

t e K e t c Kc

t e t c

L e c

Since  is -strongly monotone mapping, we get t 

 

2 , ( ) ( )

( ) ( ) ,

    

  
n n n

n n

d c d c t d t c

d c t d t c
So, by (14) and condition (3) we know 

                                                

                                             (15) 

1 ( ) ( )

.





  

 

 

n n

n

n

d c t d t c

L e c

e c

It follows (11) that 
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               (16) 

22 *

22 2 * *

( )( )

( )( ) 2 , ( )( ) ,



 

    

      

n n n

n n n n

b c d A S I Ad c

d c A S I Ad d c A S I Ad

On the other hand, we have 

                                (17) 

2* *

2

( )( ) ( )( ), ( )( )

( )( ) ,

   

 

n n n

n

A S I Ad S I Ad AA S I Ad

M S I Ad

And from Lemma 2.2, we have 

            (18) 

*

2

2 2 2

, ( )( ) ( ), ( )( )

( ) ( )( ) ( )( ), ( )( )

, ( )( ) ( )( )
1 1( )( ) ( )( ) ( )( ) ,
2 2

    

      

    

      

n n n n

n n n n

n n n

n n n

d c A S I Ad A d c S I Ad

A d c S I Ad S I Ad S I Ad

SAd Ac S I Ad S I Ad

S I Ad S I Ad S I Ad

In view of  (16 ), (17), (18) and condition (3) we derive 

                             (19) 

2 2 2

2

( 1) ( )( )

.

      

 

n n n

n

b c d c M S I Ad

d c

It follows (15) and (19),we get 

                                                (20) 2 2 2    n n nb c d c e c

Step 4. We prove is bounded.  ne

Since  

                                    (21) 

 

 

1

0

(1 )

max ,

max ,

     

     

     

    

  

  

n n n n n n

n n n n n

n n n n n

n n n

n

e c g u l e y b c

g u c l e c y b c

g u c l e c y e c

g u c g e c

u c e c

u c e c


So,  is bounded. Further  and  are also bounded.  ne  nb  ( )nt d

Step 5. We show that  1 1 .n n n nb b e e   

                 (22)  

22 * *
1 1 1

22 2 * *
1 1

* *
1 1

( )( ) ( ( )( ))

( )( ) ( )( )

2 , ( )( ) ( )( ) ,

 





  

 

 

      

     

    

n n n n n n

n n n n

n n n n

b b d A S I Ad d A S I Ad

d d A S I Ad A S I Ad

d d A S I Ad A S I Ad

Since 
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          (23) 

2* *
1

*
1 1

2
1

( )( ) ( )( )

( )( ) ( )( ), [( )( ) ( )( )]

( )( ) ( )( ) ,



 



  

      

   

n n

n n n n

n n

A S I Ad A S I Ad

S I Ad S I Ad AA S I Ad S I Ad

M S I Ad S I Ad

and by the Lemma 2.2, we get 

                         (24) 

* *
1 1

1 1

2
1

, ( )( ) ( )( )

( ), ( )( ) ( )( )
1 ( )( ) ( )( ) .
2

 

 



   

    

    

n n n

n n n n

n n

d d A S I Ad A S I Ad

A d d S I Ad S I Ad

S I Ad S I Ad

In view of  (22), (23) and (24), we have 

 

2 2 2
1 1 1

2
1

( 1) ( )( ) ( )( )

,

   



       

 

n n n n n n

n n

b b d d M S I Ad S I Ad

d d

so, 

                                                 (25) 1 1 .n n n nb b d d   

Since  is a -strongly monotone mapping, we have  g 

 
2

1 1 1 1 1, ( ) ( ) ( ) ( ) .           n n n n n n n n n nd d d d t d t d d d t d t d
Therefore, from (11),  (12) and (13), we have 

                              (26) 

   

   

   

1 1

1 1

1 1

1

1

1

1 ( ) ( )

1 ( ) ( )

1 ( ) ( )

1

.



 


 






 

 

 







  

   

   

 

 

 

n n n n

Y n n Y n n

n n n n

n n

n n

n n

d d t d t d

P t e Ke P t e Ke

t e Ke t e Ke

t e t e

L e e

e e

By (25) and (26) we know that   

                                                        (27) 1 1 .n n n nb b e e   

 Step 6. We show that   and  1lim 0,n n ne e    lim 0n n nb e   lim 0.n n ne d  

         Let 

 
1 ,
1 1
  

 
 

n n n n n n
n

n n

e l e g u y bs
l l

This means that  

 1 (1 ) .   n n n n ne l s l e
So, we obtain 
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1 1 1
1

1

1 1 1
1

1 1 1

1 1 1
1

1 1 1

1 1

( )
1 1 1 1 1

( )
1 1 1 1 1

  




  


  

  


  

 
  

 

   
               

   
               

n n n n n n
n n

n n

n n n n n
n n n

n n n n n

n n n n n
n n n

n n n n n

g u y b g u y bs s
l l

g g y y yu b b b
l l l l l

g g y g gu b b b
l l l l l

From (27), we have 

 

1 1
1 1 1

1 1

1
1

1

1 1
1 1

1 1

1 1
1 1

1 1

1

1

1 1 1

1 1

( )
1 1 1

( )
1 1 1

(
1 1

 
  

 






 
 

 

 
 

 





      
  

   
 

      
  

      
  

 
 

n n n
n n n n n n

n n n

n n
n n n

n n

n n n
n n n n n

n n n

n n n
n n n n n

n n n

n n

n n

g g ys s e e u b b
l l l

g g b e e
l l

g g yu b b b e e
l l l

g g yu b e e e e
l l l

g g u
l l

). nb

Since  is bounded, it can be concluded from condition (ii) that  nb

 1 1limsup ( ) 0,n n n n ns s e e     
and by  Lemma 2.3 and condition (iv) , we get 

 lim 0.n n ns e  
So 

                                    (28) 1lim lim (1 ) 0.      n n n n n n ne e l s e

In addition, we know that 

 1

( ) ( )

,

      

   

 

n n n n n n n n n n

n n n n n n

n n

y b e g u e g u e y b e

g u y b l e e

e e

And since , and , it is easy to 0 liminf limsup 1   n n n nl l 1  n n ng l y lim 0 n ng

know that , so, we also have  lim 1 n ny

                                                               (29) lim 0.n n nb e  

Since  

 

2 2
1

2 2 2

2 2 2 2

2 2 2 2

2 2 2

[ ( 1) ( )( ) ]

[ ( 1) ( )( ) ]

( 1) ( )( ) ,

 

 

 

     

     

        

        

      

n n n n n n

n n n n n

n n n n n n

n n n n n n

n n n n

e c g u l e y b c

g u c l e c y b c

g u c l e c y d c M S I Ad

g u c l e c y e c M S I Ad

g u c e c y M S I Ad
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Then  

 

2 2 2 2
1

2
1 1

2
1 1

( 1) ( )( )

( )( )

( ) 0 ( ),

  

 

 

        

        

         

n n n n n

n n n n n

n n n n n

y M T I Ad g u c e c e c

g u c e c e c e c e c

g u c e e e c e c n
And  

                                                  (30) 
2lim ( )( ) 0,  n nS I Ad

And  

                                  (31) 
2lim lim ( )( ) 0    n n n n nb d S I Ad

From (29) and (31) we know that 

                                                          (32) lim 0.n n ne d  

Step 7. We prove that  where  
 limsup , 0,   n nu k e k  .k P u

Since  is bounded, we have a subsequence  of with . we hve  nd  ind  nd
ind *d  nd *d

. by Opial property, then, .  Hence,  by (30) and  is demi-closed at zero, nAd *Ad * *Ad SAd S

i.e. . From (29) and (32), we also have  and .  Next, we 
* ( , )Ad MEP G  nb *d  ne *d

prove that . 
* ( , , )d GVI K t Y

Set  

 

( )
( )

  



 

  
YK N Y

T
Y

Where  is the normal cone of  at .  By [25] we get  is maximal -monotone. ( )YN Y  T t

Suppose ,  by  and  we get  ( , ) ( )  Graph T ( )    YK N ,ne Y ( ) ( ), 0,    nt t e K

then, 

                                               (33) ( ) ( ), 0.     nt t e K

It follows  

 
   ( ), n Y n nt d P t e Ke

We know 

                                    (34) ( ) ( ), ( ) ( ) ( ) 0.    n n n nt t d t d t e K e

By (33), (34), we get 
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                (35) 

( ) ( ), ( ) ( ),

( ) ( ), ( ) ( ), ( ) ( ) ( )

( ) ( ), ( ) ( ), ( ) ( )

( ) ( ), ( )

( ) ( ), ( ) ( ) ( ), ( )

( ) ( ),

   

   

  

 

     



  

     

    

 

    

 

i i

i i i i i

i i i i

i i

i i i i

i

n n

n n n n n

n n n n

n n

n n n n

n

t t e t t e Kv

t t e Kv t t d t d t e K e

t t e Kv t t d t d t e

t t d K e

t t e K K e t t e K e

t t d t( ) ( ) ( ) ( ), ( )

( ) ( ), ( ) ( ) ( ) ( ), ( )

( ) ( ), ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

 

 

 

 

 

  

     

    

    

    

i i i i

i i i i i i

i i i i

i i i i

i i i i

n n n n

n n n n n n

n n n n

n n n n

n n n n

d t e t t d K e

t t d t d t e t d t e K e

t d t e t t d K e

t d t e t t d K e

L d e t t d K e

since , we have , and from (32), we infer that  letine *d ( )
int e *( )t d

*( ) ( ), 0,  t t d

, so,  because  is  the maximal -monotonicity, so , and i  
*( ) ( ), 0 0.   t t d T t * 10d T

.  Hence, . 
* ( , , )d GVI K t Y *d 
So,we obtain  

                    (36) 
     *limsup , lim , , 0,         

in n i nu k e k u k e k u k d k

 Step 8. Now, we prove  converges strongly to .  ne k

 

  

     

     

     

   

2

1 1

1 1 1

1 1 1

2 2 2 2

1 1 1

2 2

1 1

,

, , ,

,

, ( ) ( )
2 2
1, ( )

2

 

  

  

  

 

     

        

        

          


      

 

n n n n n n n

n n n n n n n n

n n n n n n n n

n n
n n n n n n

n
n n n n

n

e k g u l e y b k e k

g u k e k l e k e k y b k e k

g u k e k l e k e k y b k e k

l yg u k e k e k e k b k e k

lg u k e k e k e k

g u    2 2

1 1
1 1, ,

2 2 


    n

n n n
gk e k e k e k

So 

                          (37) 
   2 2

1 1(1 ) 2 , ,       n n n n ne k g e k g u k e k

It follow condition (ii), (iii), (36) and Lemma 2.4 we have  and  are strongly 
,ne k nd nb

converge . k

4. Applications 

2021 International Conference Education and Management (ICEM2021)2021 International Conference Education and Management (ICEM2021)

176



4.1 Application to A Convex Minimization Problem 
It’s common knowledge that mixed equilibrium problem (3) is simplified to the convex 

minimization problem ( ) when . Hence, if   CMP 0G 1 2 ,W W , , , 0, 0,    Y D A I t I G K

we can use Theorem 3.1 to solve convex minimization problem: find satisfies c Y

 and the listed below result can be directly deduced byTheorem 3.1. ( ) ( ), ,   d c d Y

Theorem 4.1. Suppose be aclosde convex and non-empty subset of Hilbert space , Y 1W :S 1W

 is defined as , denotes metric  Y
  1: ( ) , ( ),          

 
S e b C d d b b e b d Y

r YP

projection of  onto ,  Let , and  be the sequences defined by 1W Y (0,1).   ne  nb  nd

 

 
1

1

, ,

((1 ) ),
.

 



 
 


  
   

n Y n

n Y n n

n n n n n n

e Y u Y
t d P e
b P d Sd
e g u l e y b

where , ,  satisfy the listed below conditions:  ng  nl  ny

(a)  1;  n n ng l y

(b)  lim 0; n ng

(c)  ; 0




  nn

g

(d) . 0 liminf limsup 1   n n n nl l

If , where  then  converges strongly to         : ,p p CMP     ne  .k P u

4.2 Application to Split Variational Inequalilty 

As is know to all that give a mapping , let for all . Then : F Y Y ( , ) , G e d Fe d e , e d Y

 iff  is a solution of the variational inequality  for all  ( )c EP G c Y , 0 Fe d e .d Y

If , then, split generalized variational inequality and mixed , ( , ) , , 0   t I G c d Fc d c

equilibrium problem proposed by us in this paper reduces to split variational inequality, i.e. find a 
point  such that c Y
  and . ( , )c VI K Y ( , )Ac VI F D

Where  be two nonlinear mappings; is a linear and bounded  : , : K Y Y F D D :A 1 2W W

operator. 
So, we can use Theorem 3.1 to solve split variation inequality problem and the listed below 

result can be acquired directly from Theorem 3.1. 
Theorem 4.2. Assume that  and  be two closed convex and  non-empty subsets of  real Y D

Hilbert spaces  and , severally,  is an -inverse strongly monotone mapping, 1W 2W : K Y Y 

 is a ρ-inverse strongly monotone mapping, is a  linear and bounded : F D D :A 1 2W W

operator, the adjoint operator of  is , , where  represent the A *A
1(0,2 ), , (0, )     L
M M

spectral radius of the operator , metric projection of  onto  is . Let , and  *AA 1W Y YP  ne  nb  nd

be the sequences defined by 

2021 International Conference Education and Management (ICEM2021)2021 International Conference Education and Management (ICEM2021)

177



 

1

*

1

, ,
(( ) ),

( ( ( ) ) ),
.



 



 
  


   
   

n Y n

n Y n D n

n n n n n n

e Y u Y
d P I K e
b P d A P I F I Ad
e g u l e y b

where , ,  satisfy the listed below conditions:  ng  nl  ny

(a)  1;  n n ng l y

(b)  lim 0; n ng

(c) ; 0




  nn

g

(d) . 0 liminf limsup 1   n n n ny y

If , where  then  converges strongly to     : ( , ), ( , ) ,   p p VI K Y Ap VI F D  ne

 
 .k P u

Acknowledgements 

This work was supported by Yunnan Provincial and Techology Department grant number 
2020J1164. 

References 

[1] Stampacchia, G. (1964) Formes bilinearires coercitives sur les ensembles convexes. C.R. Acad. 
Sci. Paris 258, 4413-4416. 

[2] Fichera, G. Problemi elastostatici con vincoli unilaterali, I1 problema di Signorini ambigue 
condizione al contorno. Attem. Acad. Naz. Lincei. Mem. Cl. Sci. Nat. Sez. Ia 7(8), 91-140. 

[3] Bensoussan, A., Lions, J. L. (1982.) Applications of variational inequalities to stochastic control. 
North-Holland, Amsterdam. 

[4] Bensoussan, A. , Lions, J. L. (1984) Impulse control and quasivariational inequalities, Gauthiers 
Villers, Paris. 

[5] Baiocchi, C., Capelo, A. (1984) Variational and quasi-variational inequlities. Wiley, New York. 

[6] Crank, J. (1984) Free and Moving Boundary problems. Clarendon Press, Oxford. 

[7] Glowinski, R. (1984) Numerical methods for nonlinear variational problems. Springer, Berlin. 

[8] Kikuchi, N., Oden, J. T. (1998) Contact problems in elasticity. SIAM, Philadelphia. 

[9] Blum, E., Oettli, W. (1994) From optimization and variational inequalities to equilibrium 
problems. Math. Stud. 63, 123–145. 

[10] Noor, M., Oettli, W. (1994) On general nonlinear complementarity problems and quasi 
equilibrium. Mathematiche (Catanin), 49, 313–346. 

[11] Censor, Y. and Elfving, T. (1994) Amultiprojection algorithm using Bregman projections in a 
product space. Numer, Algorithms, 8, 221-239. 

[12] Censor, Y., Bortfels, T. and Trofimov, A. (2006) A unified approach for inversion problem in 
intensity-modulated radiation therapy. Phys. Med. Biol, 51, 2353-2365. 

[13] Censor, Y., Elfving, T., Kopf, N. and Bortfeld, T. (2005) The multiple-sets split feasiblility 
problem and its applications. Inverse Probl, 21, 2071-2084. 

[14] Censor, Y., Motova, A. and Segal, A. (2007) Perturbed projections ans subgradient projiections 

2021 International Conference Education and Management (ICEM2021)2021 International Conference Education and Management (ICEM2021)

178



for the multiple-sets split feasibility problem. J. Math. Anal. Appl, 327,12441256 

[15] Censor, Y., Gibali, A. and Reich, S. (2012) Algorithms for the split variational inequality 
problem. Numerical Algorithms, vol.59, no.2, pp. 301-323. 

[16] Kazmi, K. R. and Rizvi, S. H. (2013) Iterative approximation of a common solution of a split 
equilibrium problem, a variational inequality problem and a fixed point problem. Journal of the 
Egyptian Mathematical Society , vol.21, pp. 44-51. 

[17] Moudafi, A. (2011) A note on the split common fixed-point problem for quasinonexpansive 
operators. Nonlinear Anal, 74, 4083–4087. 

[18] Zhang, X. F., Wang, L., Ma, Z. L. and Qin, L. J. (2015) The strong convergence theorems for 
split common fixed point problem of asymptotically nonexpansive mappings in Hilbert spaces. 
Journal of Inequalityes and Applications. 

[19] Peng, J. W. and Liou, Y. C. (2009) An iterative algorithm combining viscosity method with 
parallel method for a generalized equilibrium problem and strict pseudocontractions. Fixed Point 
theory Appl, Article ID 794178. 

[20] Crombez, G. (2006) A hierarchical presentation of operators with fixed points on HIlbert 
spaces. Numer Funct Anal Optim, 27, 259-277. 

[21] Suzuki, T. (2005) Strong convergence theorems for infinite families of nonexpansive mappings 
in feneral Banach spaces. Fixed Point Theory Appl, 103-123. 

[22] Xu, H. K. (2002) Iterative algorithms for nonlinear operators. J. Lond. Math. Soc, 2, 1-17. 

[23] Chang, S. S., Kim, J. K. and Wang, X.R. (2010) Modified block iterative algorithm for solving 
convex feasibility problems in Banach spaces. J. Inequal. Appl. V. 14, doi:10.1155/2010/86968. 

[24] Geobel, K. and Kirk, W. A. (1990) Topics in metric fixed point theory. Vol. 28 of Cambridge 
Studies in Advanced Mathematics, Cambrige University Press, Cambridge, UK. 

[25] Zhang, U., Chen, J. M. and Hou, Z. B. (2010) Vixcosity approximation methods for 
nonexpansive mappings and feneralized variational inequlities. Acta Math. Sin, 53, 691-698. 

2021 International Conference Education and Management (ICEM2021)2021 International Conference Education and Management (ICEM2021)

179


