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Abstract: In this article, a neo-iterated scheme is constructed to settle split generalized variational
inequality and mixed equilibrium problem in two different Hilbert spaces. Under several mild
conditions, the sequence produced of the proposed iterated algorithm converges strongly to solution
of split generalized variational inequality and mixed equilibrium problem is proved. As application,
we shall apply our result to reserach the split variational inequality problem and convex
minimization problem. The results received in this paper enhance and generalize a number of recent
relevant results.

1. Introduction

Suppose 7 is a real Hilbert space, Y is a closed convex non-empty subset of 7. the problem of

generalized variational inequality (GVD) s to seek €Y satisfies

(Ke,t((d)—1(c))>0,V1(d) €Y, (1)

Where K : 7/ > 7/be a non-linear opreator, I: 7' —>7/ be a continuous operator.

GVI(K.t1, Y') represents the solution set of (1).

If =1 problem (1) simplified the variational inequality problem, which is considred to seek
ceY satisfies
Ke,d—c)>0,Vd €Y,
{ ) )
VI(K.Y) represents the solution set of (2).
Stampacchia [1] and Fichera [2] introduced Variational inequality theory, which furnishes the
unified, natural, descent and valid structure for a ordinary treatment of a broad category of

extraneous linear and non-linear problem proceed from transportations, elasticity, economics,
engineering sciences, optimization and control theory, see for instance [3-8].

The mixed equilibrium problem (MEP) s to seek ¢ €Y satisties
G(c,d)+p(d)—p(c)=20, Vd €Y, 3)
Where : — £tis a nonlinear bifunction, is a function with

Cdomp #2 . MEP(G, ) represents the solution of (3).

if?="0 , the mixed equilibrium problem of (3) down to the equilibrium problem, which is to seek
c €Y satisfies

G(c,d)ZO, VdEY, (4)

EP(G) represents the solution set of (4).
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The mixed equilibrium problem covers serval significant problems arising in science
optimization, economics, physics, engineering, structural analysis, transportation and network, It
has been demonstrated that mathematical programming problems can be thinked of as a prticular
accomplishment of the abstract equilibrium problems (e.g. [9,10]).

Recently, split feasibility problem (SFP) , which was first presented by Censor and Elfving [11],
has been widely concerned due to its utilizations in diverse fields, for instance, computer
tomograph, image restoration and radiation therapy treatment planning [12-14]. SFP is considered
the problem of seeking a point ¢ satisfies

ceY and AceD

7,

Where ¥ and D be closed convex nonempty subset of real Hilbert spaces “ and "2

;respectively. 4: M=%, is a linear operator with bounded .

After split feasibility problem appeared, many authors used its idea to study more generalized
split feasibility problem, such as split equilibrium problem, split common fixed point problem, split
variational inequality problem and so on, for details see [15-18].

In this article, we research following split generalized variational inequality and mixed

equilibrium problem in two distrint Hilbert spaces: seek a point € €Y satisfies

ceGVI(K,,Y) .4 Ac e MEP(G, )

&)
We construct an iterated algorithm and obtain strong convergence theorem. The main results
recived in this paper enhance and generalize a number of relevant result.

2. Preliminaries

The inner product denoted by <" > , the norm denoted by ”” .
We call a mapping I : Y = %/

(a) monotone, if

<Te—Td,e—d> >0, Ve, deV;

(b) strongly monotone, if y >0 satisfies

<Te—Td,e—d> > 7/||e—d * Ve,deV;

(c) @ -inverse strongly nonotone, if there is @ >0 such that
<Te—Td,e—d> > w”Te—Td ’ Ve, deV;

(d) @ -inverse strongly -monotone, if thereis @ > 0 and a nonlinear operator ¢ from Y into
itself such that

<t(e)—t(d,Te—Td> > w”Te—Td > Ve,deV;

(e) L-Lipschitz continuous, if there exists a constant L > 0 such that
|[Te—Td|< L|e-d||, Ve,d eY;

(f) firmly nonexpansive, if

<Te—Td,e—d> 2||Te—Td 2, Ve,d € C;

g U:7'-//1—)2W1

A multi-valued mappin £ Vede 74, 0 eUe and VEUd

(e=d,0-v)>0.

1S monotone, i

7
A monotone mappingU 72 is said to be maximal if the Graph(U) cannot
be properly included in the graph of any other monotone mapping.

(6,6’)6 W x (e—d,@—v>20

satisfy

A monotone mapping U is called maximal iff > for each

(d,v) < Graph(U) implies that Ocle and a mapping U is maximal & - monotone when and only
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e,u)e W X<, <g(e)—g(d),u—v>20

when for ( > for each (d,v) < Graph(U) implies that ¥ € Ue

We suppose bifunction G:¥xY =R @ and the set Y satisfy the following conditions to solve
mixed equilibrium problem (3):
(B1) G(e,e)=0,VeeY;

(B2) G is monontone, i.c. Gle.q)+G(q,€)<0, Ve,g € ¥;

(B3) Forall 4@ €Y, lim , G(ta+(1~-1)e,q) < G(e,q);

(B4) For every € €Y _ the function 47 G(&:9) is convex and lower semi-continuous.

(C1) For every €€7Y > O, there is a subset with bounded Y.cY and 9 € Y ndomg satisfies
G(e,qe)+¢(qe)+%<qe —b,b—e)<p(b), VbeY\Y

(C2) Y is a bounded set.
Lemma 2.1. ([19]) Suppose G: Y XY = R 5 a bifunction and satisfies the conditions (B1)-(B4) ,

1Y > RU{+ooy . . . . P
@:Y > RU{+0} isa convex and lower semicontinuous proper function satisfying ¥ /) 40me # Z

. For §>0, eey,deﬁneaoperator S:Y > % asbelow:

S(e)= {0‘ ev: G(eaQ)Jr(P(C])Jrl(C]—OK,a—e) > p(a), Vq € Y}

d 6
(6)

For every e e 7/. Suppose both (C1) and (C2) are true. Then the listed below conclusions hold:

(a) For every ¢€ 7/, S(e)#2;

(b) S is firmly nonexpansive;
(c) S is single-valued;
(d) F(5)=MEP(G,p);

(e) MEP(G.9) is convex and closed.

Lemma 2.2. ([20]) Suppose I ': W > is a nonexpansive mapping, then 7 has the listed
below properties:

(I)V(e,d) & WX, we have
2

((e~Te)—(d —Td),Td —Te) < %”(Te—e) —(Td - d)

(7
((Te—e)—(Td—d),d —e) < —l”(Te—e)—(Td—d) 2
2 (8)
() V(e,d) N ><Fix(T)’we have
1 2
<(e—Te),d—Te>S5||Te—e|| . ©

Lemma 2.3. ([21]) There are bounded sequences {e”}’ {d"} in a Banach space £, let sequence

{gn} € [O’ 1] SatiSﬁeS 0< hmlnfn—)oo é,,, <lim Supn—)oo é,n <l . Assume € = (l - é/n )dn + gnen fOf
every 720 and lim supn_m( d,.—d./|-l|e. —e, )S 0. Then lim, ,_|ld,—e,|=0.
Lemma 2.4. ([22]) Suppose sequence {'B ”} is nonnegative real numbers and satisfies
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Bra<(1-¢,)B,+5.7, , here sequence (&,5 (0.1 and Z"ZI &= {7) is a sequence with

limsup, , 7, <0 (or anl EY | <0 ). Then lim, ., g, =0.
B (0): E:llel < . . .
(0 {e © ||e|| r} be a closed ball with center 0 and radius * > Oin

Se} < B (0)

Lemma 2.5. ([23]) Let

. . o €,6,,""
uniformly convex Banach space £. For given arbitrarily sequence { r2e

>0,3 " u=1
H; 2 Luia M =h then there is a
h(0)=0 such that for

given arbitrarily number sequence {,u Lt ”’m} such that

convex and continuous strictly increasing function h:[0,2r) >[0,0) ity

any 1/ €NsT<J the below inequalty is true:
e} 2 o0
S s <SSl sl e,

n=1
Lemma 2.6.([24]) Suppose §:Y >Ypea nonexpansive mapping, then I=S is demi-closed at

(10)

peY

zero, that is to say, for every sequence {e”} in Y. if {e”} converges weakly to and

{(I - S)e"} converges strongly to 0, then(l B S) p=0 .

3. Main Results

In this part, we suppose the listed below conditions are met:

(1) Assume that ¥ and D be two closed convex and non-empty subsets of real Hilbert spaces

" and 7%, severally;

(2) K:Y =Y s an @ -inverse strongly !-monotone mapping; tY>Yi 4 o -strongly

monotone and L-Lipschitz continuous mapping with Y= R(t) (the range of 7); G:DxD—>R i,

A: >N, .

bifunction; is a linear and bounded operator, the adjoint operator of 4 is 4.

/16(0,220'),O'>L,]/€(0,L), .
3) M where M is the spectral radius of A4
Now, we present the main result as below:

Theorem 3.1. Let 74,70,,Y,D, A, y,a,L,M,G, 4,1 and K be the same as above. Assume that S

is defined as in (6), B is a metric projection of 4 onto Y. Let {e”}, {b”}and {d”} be the
sequences defined by

egeYuel,
t(dn ) = PY (t(en ) - Z'Ken)’
bn = PY(dn + ]/A*(S _1)(Adn))7
en+l :gnu+lnen +ynbn' (11)
where {g ”} , {l”} ,{y ”} satisfy the listed below conditions:
(1) gn +ln +yn :1’
(11) hmnﬂoo gn = O’
8y =0

(iii) ;
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(iv) 0<liminf, [ <limsup, [ < I

Q:{p:peGVI(K,t,Y),ApeMEP(G,(p)}

If Q#9 where ’then{e”}converges strongly to

k= Fu.
Proof. Let us break the proof down into several steps.

Step 1. We will first prove that € € # is a solution of GVI(K..Y) &

t(e) = P,(t(e)— AKe), VA >0,

(12)
By using the characteristic inequality of the projection, for any d<€Y, we have
ce GVI(K,1,Y) < <Ké,t(d) - t(é)> >0
N </1Ké,z(d) —z(2)> >0
PN <r(é) —AKe—1t(e),(d) - t(é)> <0
& 1(e) = P (t(e)— AKe).
Step 2. Showing li(e)— 2Ke~(t(d)~ AKd)|" <[t(e)~1(d)| + (A —2a)|Ke—Kd| .
In fact
lt(e)— AKe—(t(d) ~ AKA)|| = t(e)~t(d)| —2A({Ke—Kd,t(e)~t(d))+ A* || Ke - Kd|
<|e)~1(@)| —2a2|| ke~ Kd| + 2*|Ke - Kd|
=)~ ()| + A4 —2@)|Ke-Kd| . (13)
Next, we prove {e"} converges strongly to b= Fou.
Step 3. We prove that by _C” = ”e” _C”'
Let€ € % hence H(c) = £, (t(c) — AKc) by (12), further, it follows from Lemma2.1, SAc = Ac.
By (13) and condition (3) we have
e, =) =17 (1(e,) = 2K (e,)) = Py (t(e)~ AKO)|
<|te,) - 2K (e,) - (t(c) - AKc)|
<|te,) ()|
SL”en—c , (14)
Since ! is O -strongly monotone mapping, we get
old,~c| <(d,~c,1(d,)~1c))
<|\d,- c| ||z‘(dn) —t(o)|,
So, by (14) and condition (3) we know
Jd, - == Jrta, -
< e, ~d|
S”en —c”. (15)

It follows (11) that
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b, =<l <[ld, + 74" (s - 1)(4d,)~[

=|d, —c[ +»*|4"(S-1)(4d,) ’ +2y(d, -, 4’ (S-1)(4d,)),

On the other hand, we have

|4 (s -1)(4d, )HZ =((S-1)(4d,), A4 (S~ I)(Ad,))

<M|(S-1)(Ad,)

And from Lemma 2.2, we have
(d,-c.4'(S—1)(4d,))=(A(d, -c).(S—1)(4d,))
=(A(d, —c)+(S—1)(4d,)~(S—I)(4d,),(S ~I)(4d,))
=(SAd, — Ac,(S—1)(Ad,))~|(S - I)(Ad,)|

2

“ || -1)(4d,)

<~fs-rad,) ——ls-14d,)

In view of (16), (17), (18) and condition (3) we derive

2

|6, = | <|d, — [ + My -D|(S-1)Ad,)
2
d, —c|| .

<

It follows (15) and (19),we get

[, =l <[ld, =] <[, - <]

Step 4. We prove {e”} is bounded.
Since

e, —c” =|gu+le +yb, —c||

n-n

<g,
<g, ||u —c||+ A

u—c||+(1—gn)

e, ~<[}
€ _C“}

So, {e”} is bounded. Further {b”} and{t(d")} are also bounded.

u—c||+ln

b, ~]

e, —(|

e, —c|+,

e, —c|+,

=g, e, ~|

< max {”u —C

3

9

< max {”u —-C

Step 5. We show that b, =b, | =le, =€l
b,=b, [ <|d, + 74 (S—1)Ad,)~(d, ,+y4'(S— I\ Ad, )|
=|d, ~d, [ + 74"~ 1)Ad,) - 4" (S~ 1)(Ad, )|
+2y(d,—d, ,, A (S—1)(Ad,) - 4" (S-1)(4d,,)),

Since
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[4°(s - D)(4d,) - 4'(S = I)(Ad, )|

= ((S—1)(4d,)~(S=I)(4d, ), AL[(S = I)(Ad,)~ (S~ I)(4d, ))])
<M |(S-1)(4d,)~(S-1)(4d, ),

(23)
and by the Lemma 2.2, we get
(d,~d, .4 (S-I)(Ad)-4'(S-1)(Ad, )
=(A(d, ~d, ).(S~1)(4d,)~(S~1)(4d,.))
1
<—>[(s-1)4d,) (S~ D)(4d, )
2 (24)
In view of (22), (23) and (24), we have
b, =b,.\[ <|d, ~d, [ +7GM =D -1)4d,)~ (S ~I)(Ad, )
< dn _dn—l ’ H
SO,
||bn _bn—l < dn _dn—l : (25)
Since € is a O -strongly monotone mapping, we have
o dn - dn—l ’ < <dn - dn—l H t(dn) - t(dn—l )> < dn - dn—l ||l(dn) - t(dn—l )”
Therefore, from (11), (12) and (13), we have
1
|d,~d,.| <=[«d,)~ua,.)|
o
1
= ;HPy(t(en)— AKe,)-F,(t(e,.,) —leen_l)H
1
<—it(e,)~2Ke,) (¢ e, )~ AKe, )|
1
< ;Ht(en ) —t(en_l )H
L
<—lle, —e,,
<l =€l (26)
By (25) and (26) we know that
b —b [<|e —e, I @7)
Step 6. We show that lim _ e . —el|=0, lim,  |b —e =0 and lim _,_|le,—d,|=0.
Let
— en+1 _lnen — gnu +ynbn
1=, -1

This means that
e.,.=01-10)s +le,.
So, we obtain
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_ gn+1u + yn+lbn+1 _ gnu + ynbn

Spi1 T8, =
1 - ln+1 1 - ln
— gn+1 _ gn u—+ yn+l (bn+1 _bn)+ yn+l _ yn bn
1 - Zn+1 1 - ln 1 - ln+1 1 - ln+1 1 - ln
— gn+l _ gn u+ yn-H (bn+l _bn)+ gn _ gn-H bn
1_ln+] l_ln 1_Zn+l l_ln 1_ln+1
From (27), we have
Sn+1 _Sn - en+1 _en < g”’*l - g” ||l/l|| +| y”’*l bn+1 _bn
1 - Zn+1 1 - ln R
+ gn _ gn+1 bn _ en+1_en
1 - Zn 1 - Zn+1
gn+l gn yn+1
= Lot S ]+ |, )+ [~E B~ b [ ~le,., —e
l—lnﬂ 1_ Zn (” || n ) 1_ Z’Hl n+l n n+l n
g +1 g y +1
<= — = (| + (1D, ) + [ [le,., —e,ll—|le,.. —€
l—ln+1 l_ln (” || n ) l—ln+1 || n+l n” n+l n
g +1 g}
<|-Eu_En Lyl + 5 |).
Lo L)
Since {b”} is bounded, it can be concluded from condition (ii) that
hm Supnﬁoo( Sn+1 _Sn - en+1 _en ) < O’
and by Lemma 2.3 and condition (iv) , we get
lim (s —e |[=0.
So
limn%oo en+1 - en = lirnn~>oo (1 - ln) Sn - en = 0

(28)
In addition, we know that
yn b - e}’l - g}’l S

n

u-—e,

gn(u_en)+yn(bn _en)”
gnu +yl’lbn +Zl’lel7 _en

en+1 _en H

And since O<liminf [ <limsup, [ < 1’ g, +L+y, :1and lim, ,_ g =0

, 1t 1s easy to

know that lim, ,,, y, <1 , S0, we also have
lim, b, —e,||=0. 29)
Since
e, —c||2 =|gu+le +yb, —c||2

<gfu—cf +1 e, ~ +, b, ~¢[

<g,fu—c[ +1, e, ~ < +y,0ld, [ + yy -1)|(S - 1)(4d, )]

<g, fu—c +1,)e, ~¢[ +y.lle, ~c + My -D|(S~I)4d,)[ ]

<g,Ju—c +le, ~c| +»,7(My -D|(S - 1)(4d,)[ |
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Then
v,y My =D|(T -D)Ad ) < g, Ju~c[ +]e, ~¢[ ~Je,.. <[
=8 = + e ~el =l ~elle, =l + e =<
=g u—c”2 +lle, —e,.,ll(le, —c||+ €. —c||) =0 (n—> ),
And
lim, ,, ”(S _I)(Adn)||2 =0, (30)
And
lim, . |6, —d,| <lim, ., [(S - 1)(4d,)| =0 31
From (29) and (31) we know that
lim, . |le,—d,|=0. (32)
I —k,e,—k)<0 P
Step 7. We prove that P <u " > " where k= Fyu.

Since {d”} is bounded, we have a subsequence { ""} of {d”} with 4, _.d " we hve {d”} ~d
. by Opial property, then, Ad, . 4d " Hence, 4d " =S4d by (30) and S is demi-closed at zero,

ie. 4d €MEP(G.9) Erom (29) and (32), we also have {b"} —~d" and {e”} ~d Next, we

prove that d eGVI(K,t.Y)

Set

{K9+NY(9) feY
T(0)=

(%) 0gY

Where Ny (9) is the normal cone of ¥ at €. By [25] we get 7' is maximal ! _monotone.
Suppose (1) €Graph(T) o u=KOEN,(O0) 4 €, €Y, (o oo ((0)=1(e,), u=K0)20,
then,

(1(0)—t(e,), Ap— 1K) > 0.

(33)
It follows
t(d,)="P,(t(e,)— AKe,),
We know
(1(0)-1(d,),1(d,)—t(e,)+ 1K (e,)) = 0. (34)

By (33), (34), we get
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<z(0) e, ), ,w> <t(9) te, ), M@}
> (1(0) (e, ), AKV)~((0) ~1(d, ),1(d, )~ (e, )+ AK e,))
= (10)~t(e, ). AKv) = (1(6) ~ (d, ).1(d, )~ (e, )
~(1(0)~1(d, ), 2K (c,))
= <z(9) ~t(e, ), AKO— 1K (e, )> + <z(9) ~t(e, ), AK (e, )>
—(10)-1(d, ), 1(d,)~1(e,))~(1O)~1(d, ), AK e,))
> ~((0)-1(d, ),1(d, )~ (e, ))+(t(d, )~ t(e, ), AK e, )
=—(1(d,)~H(e,),H(0)~1(d,) + 2K (e,))
> —|ed, )~ (e, | |[(O) -1, )+ 1K e, )
>-L|d, -e,[[|0)-t(d,)+ 1K (e, )|
(35)
(t0)-1(d"), Az) 2 0, |

. * t *
since & — d , we have (e”t) . ud)

; t(O@)—t(d"), u—0)>0. e
L% g0, < ©)=1(d"), 1 > because 7 is the maximal t-monotonicity, sod €T '0 , and
d eGVI(K,1,Y) Hence, d €.

So,we obtain

, and from (32), we infer that et

N A A A~ A A

limsup, . <u “ke —k> = lim, <u ke, —k> - <u —kd' —k> <0,

(36)
Step 8. Now, we prove {e”} converges strongly to k .
A2=<gu+le +y,b, lAce 1—1;>
<u ke l—k>+l <e ke l—k>+y <b —lAc,en+1—lAc>
<u ke 1—k>+ He k €+1—];
<o frmf )i
<g, <u lAce g >+1 (H
N +5uew A
So
lev.o = <a-g)]e, ] +2¢, (u-E.e,.. ), .

A

It follow condition (ii), (iii), (36) and Lemma 2.4 we have ¢, >k d, and b, are strongly

converge k .

4. Applications
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4.1 Application to A Convex Minimization Problem

It’s common knowledge that mixed equilibrium problem (3) is simplified to the convex
minimization problem (CMPY when G =0 Hence, if M=%, Y=D,d=1,t=1,G=0,K =0,
we can use Theorem 3.1 to solve convex minimization problem: find ¢ €Y satisfies

¢(d)2 p(c),Vd €Y, o4 the listed below result can be directly deduced byTheorem 3.1.

Theorem 4.1. Suppose Y be aclosde convex and non-empty subset of Hilbert space %1’, S:74

S(e):{b € C:¢(d)+l<d—b,b—e>2go(b), Vd e Y}
r

=Y is defined as Y denotes metric

projection of 7 onto Y € (0.1). 1 et {e”}, by} and .} be the sequences defined by
eeYuel,
t(d,)=Pe,
b,=F((~y)d, +ySd,),
e.,.=gu+le +yb

n'n*

where {g ”}, {l”} , {y ”} satisfy the listed below conditions:
(a) gn +ln +yn :1’

(b) 1imn—>oc & = 0’
(c) B =%,

n—>0 "n n—>0 "n

(d)0<liminf [ <limsup l<1. )

If Q#J  where Q= {p P CMP((D)}’ then {e"} converges strongly to k= Fyu.
4.2 Application to Split Variational Inequalilty

As is know to all that give a mapping £ :Y =Y et Gle.d) :<Fe,d—e> for all @9 €Y Then

— >
¢ € EP(G) iff c€Y s a solution of the variational inequality<F e,d—e)20
t=1,G(c,d)= <Fc,d—c>,¢ =0

for alld €Y.

If , then, split generalized variational inequality and mixed
equilibrium problem proposed by us in this paper reduces to split variational inequality, i.e. find a
point € € Y such that

ceVI(K,Y) and AceVI(F,D).

Where K 2 Y, F:D > D o 46 nonlinear mappings; A4: 7>, is a linear and bounded
operator.

So, we can use Theorem 3.1 to solve split variation inequality problem and the listed below
result can be acquired directly from Theorem 3.1.

Theorem 4.2. Assume that ¥ and D be two closed convex and non-empty subsets of real
Hilbert spaces 4 and %;, severally, K:Y =Y s an @ -inverse strongly monotone mapping,

F:D—>D j5 a p-inverse strongly monotone mapping, A: %ﬁ%is a linear and bounded

. 2e(0.2@).0> Lye(0,—)
operator, the adjoint operator of 4 is4 | , where M represent the

spectral radius of the operator AA*, metric projection of “ onto ¥ isPY. Let {e”}, {b"} and {d”}
be the sequences defined by
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eeYuey,
d, =P, ((I-4K)e,),

b, =B(d, +y 4 (P,(I-2F)~1)Ad,).
e .=gu+le +yb

n-n*

where {g ”}, {l”} , {y ”} satisfy the listed below conditions:
(a) gn+ln+yn:1;
(b) limn%oo gn = 0’

(c) &m0 =%,

2

(d) 0<liminf, .y, <limsup, ., v, <1

Q={p:peVI(K,Y),Ap eVI(F,D)},

If Q#9  where then {e”} converges strongly to

k =P,u.
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